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PREFACE

At the outset | WISH A VERY HAPPY AND PROSPEROUS NEW YEAR to
all the esteemed readers. The year 2011 has been my fifteenth year in the field of text
book writing without any break. The response graph for my books has maintained
upward trend as years have rolled out. I am highly grateful to the commutnity of readers
in this regard.

With great pleasure I am writing these few lines on the NEW YEAR day as a
preface to the text book ENGINEERING MATHEMATICS - II prepared as per tie
VTU syllabus w.e.f 2010-11. It also caters to the need of autonomous institutions in
Karnataka and other technological universities in the country. I believe that the book
caters to the need of average as well as above average students.

Two of my senior colleagues in the department Dr. D Mamta and
Ms. G.V Pankaja have dedicatedly carried out the work assigned by me in the
preparation of this book. I profusely thank them for executing the assigned task in time,

Lam highly thankful to Mr. K.V Balakrishna of M/s Sudha Publications for giving
me a free hand in the preparation of books and confidently publishing them with quality.

Meticulous type setting work by Mr. S. Raghunandhan and his colleagues of M/s
Allkind is note worthy. '

I'thank the printers for their co-operation in bringing the book in time.

Leagerly look forward for comments and suggestions. ] once again wish every one
A HAPPY NEW YEAR - 2011.

January 1st 2011 K.S.Chandrashekar
Mysore - 8

REWARD

VTU students of the current scheme w.e.f 2010-11, scorin ¢ 125/125 in all four
papers of Engineering Mathematics I to IV Semesters (10 MAT 11, 21, 31, 41)
will be rewarded with a cash prize of Rs.7,500/- by the author. Please write to
the author directly along with attested xerox copies of marks cards of all the four
semesters.

Achiever: Mr. Bharath M.V, a student from 2006 batch of E&C branch
from PESIT, Bangalore, received cash prize during 2008.
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SYLLABES

ENGINEERING MATHEMATICS - 11

Code : 10 MAT 21 1A Marks : 25

Hrs / week : 04 Exam Hrs : 03

Total Hrs : 52 Exam Marks : 100
PART - A

. Unit-I: Differential Equations - 1

Equations of first order and higher degree ( p —y - x equations ), Equations solvable
for p, y, x. General and singular solutions, Clarauit’s equation. Applications of
differential equations of first order-illustrative examples*, [6 hours)

Unit - Il : Differential Equation -2

Linear differential equations : Solution of second and higher order equations with
constant coefficients by inverse differential operator method. Siultaneous differential
equations of first order. {7 hours]

Unit - 1 : Differential Equations - 3

Method of variation of parameters, Solution of Cauchy’s and Legendre’s linear
equations, Series solution of equations of second order, Frobenius method - simple
problems. [6 hours]

. /Unit - IV : Partial Differential Equations (PDE)

Formation of partiai differential equations (PDE) by elimination of arbitrary constants
& functions. Solution of non-homogeneous PDE by direct integration. Solution of
homogeneous PDE involving derivative with respect toone independent variable only.
Solution of Lagrange’s linear PDE. Solution of PDE by the method of separation of
variables {first and second order equations) [7 hours]



PART - B

Unit - V: Integral Calculus

Multiple Integrals - Evaluation of double integrals and triple integrals. Evaluation of
double integrals over a given region, by change of order of integration, by change of
variables. Applications to area and volume - illustrative examples*.

Beta and Gamma Functions - Properties and problems [6 hours]

Unit - VI: Vector Integration

Line integrals - definition and problems, surface and volume integrals - definition.
Green’s theorem in a plane, Stoke’s and Gauss divergence theorem (statements only).
{6 hours]

~Unit - VII: Laplace Transfoms - 1

Definition, transforms of elementary functions, propertics, periodic function, unit step
function and unit implulse function. [7 hours)

o Anit - VIII : Laplace Transforms - 2

Inverse Laplace Transforms, Convolution theorem, solution of linear differential
equations using Laplace transforms. Applications - illustrative examples*. [7 hours]

Note : * In the case of illustrative examples, questions are not to be set.
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